1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
| #include<bits/stdc++.h> using namespace std; #define ll long long #define ld long double #define vi vector<int> #define vl vector<vll> #define pii pair<int,int> #define pll pair<ll> inline bool isprime(ll num) {if(num==2||num==3)return true; if(num%6!=1&&num%6!=5)return false; for(int i=5;1ll*i*i<=num;i+=6){if(num%i==0||num%(i+2)==0)return false;} return true;} const int mod = 1e9+7; inline ll mul(ll a,ll b,ll c){return (a*b-(ll)((ld)a*b/c)*c+c)%c;} inline ll exgcd(ll a,ll b,ll &x,ll &y){if(!b){x=1;y=0;return a;}ll g = exgcd(b,a%b,y,x);y-=a/b*x;return g;} inline ll quick_pow(ll a,ll b,ll mod){ll res=1;while(b){if(b&1)res=mul(res,a,mod);a=mul(a,a,mod);b>>=1;}return res;} inline ll quick_pow(ll a,ll b){ll res=1;while(b){if(b&1)res=mul(res,a,mod);a=mul(a,a,mod);b>>=1;}return res;} inline ll inv(ll x){return quick_pow(x,mod-2);} inline ll inv(ll x,ll mod){return quick_pow(x,mod-2,mod);} inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} inline ll lcm(ll a,ll b){return a*b/gcd(a,b);} const int N = 1e5+10; int a[N*2]; int prime[N*2],cnt; bool vis[N*2]; vector<int>v[N*2]; void init(){ for(int i=2;i<N*2;i++){ if(!vis[i])prime[cnt++]=i; for(int j=0;j<cnt&&1ll*prime[j]*i<N;j++){ vis[i*prime[j]]=1; if(i%prime[j])break; } } } int main(){ init(); int n; scanf("%d",&n); for(int i=1;i<=n;i++){ scanf("%d",&a[i]); int t = a[i]; for(int j=0;j<cnt&&1ll*prime[j]*prime[j]<=t;j++){ int ccnt = 0; while(t%prime[j]==0){ ccnt++; t/=prime[j]; } v[prime[j]].push_back(ccnt); } if(t!=1)v[t].push_back(1); } ll ans = 1; for(int i=0;i<cnt;i++){ if(v[prime[i]].size()<n-1)continue; sort(v[prime[i]].begin(),v[prime[i]].end()); if(v[prime[i]].size()==n-1){ ans=ans*quick_pow(prime[i],v[prime[i]][0]); } else { ans = ans * quick_pow(prime[i], v[prime[i]][1]); } } cout<<ans<<endl;
}
|