1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
| #include<bits/stdc++.h> using namespace std; #define ll long long #define ld long double inline bool isprime(ll num) {if(num==2||num==3)return true; if(num%6!=1&&num%6!=5)return false; for(int i=5;1ll*i*i<=num;i+=6){if(num%i==0||num%(i+2)==0)return false;} return true;} const int mod = 998244353; inline ll mul(ll a,ll b,ll c){return (a*b-(ll)((ld)a*b/c)*c+c)%c;} inline ll exgcd(ll a,ll b,ll &x,ll &y){if(!b){x=1;y=0;return a;}ll g = exgcd(b,a%b,y,x);y-=a/b*x;return g;} inline ll quick_pow(ll a,ll b,ll mod){ll res=1;while(b){if(b&1)res=mul(res,a,mod);a=mul(a,a,mod);b>>=1;}return res;} inline ll quick_pow(ll a,ll b){ll res=1;while(b){if(b&1)res=mul(res,a,mod);a=mul(a,a,mod);b>>=1;}return res;} inline ll inv(ll x){return quick_pow(x,mod-2);} inline ll inv(ll x,ll mod){return quick_pow(x,mod-2,mod);} inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} int main(){ int n,m,l,r; scanf("%d %d %d %d",&n,&m,&l,&r); int x=r-l+1; if(1ll*n*m%2==1)printf("%lld\n",quick_pow(x,1ll*n*m)); else{ if(x%2==0)printf("%lld\n",quick_pow(x,1ll*n*m)*inv(2)%mod); else printf("%lld\n",(quick_pow(x,1ll*n*m)+1)*inv(2)%mod); } }
|